Government Engineering College Jhalawar Department of Management Studies MBA I Year(OR)

Attempt Any four question

Date:06/03/2018

MM:10

Q.1. two players R and C have one coin each. After a signal each of them exposes the coin . Player R wins a unit when there are two heads, wins nothing when there are two tails and loose 1/2 unit when there is one head and 1 tail. Determine the payoff matrix, the best strategies for each player and the value of game.

Q.2. A and B play a game in which each has three coins, a 5 paise, a 10 paise and a 20 paise coin. Each player selects a coin without the knowledge of other's choice. If the sum of the coins is an odd amount, A wins B's coin and if the sum is even, B wins A's coin. Find the best strategy for each player and value of game.

game.
Solution : The game matrix will be
$$\cdot$$
 'B'
 $B_1 B_2 B_3$
 $5 10 20$
 $A_1 5 -5 10 20$
 $A_1 5 -5 10 20$
 $A_2 10 5 -10 -10$
 $A_3 20 5 -20 -20$

A

Applying law of dominance we can delete 3rd row and 3rd column. The reduced ame matrix is 'B'

		B ₁	B ₂	
,	A_1	-5	10	15
	A ₂	5	-10	15
		10	20	

Pheody and interchanging the differences we get :

$$A_{1} = \begin{bmatrix} -5 & 10 & 15 \\ 5 & -10 & 15 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 5 & -10 & 15 \\ 5 & -10 & 15 \end{bmatrix}$$

$$20 = 10$$
Optimal Strategy for A :
$$\begin{pmatrix} 15 \\ 30 \\ 15 \\ 30 \\ 0 \end{pmatrix}$$
 or
$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 0 \end{pmatrix}$$
Optimal Strategy for B :
$$\begin{pmatrix} 20 & 10 \\ 30 & 30 & 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 3 & 0 \end{pmatrix}$$
Value of the game =
$$\frac{-5 \times 15 + 5 \times 15}{30} = 0$$
The game is fair for both the players.

Q.3. Find the solution of following game by using law of dominance:

'A'

			В		
		B_1	B_2	B ₃	\mathbf{B}_4
٨	A ₁	3	2	4	0
A	A_2	3	4	2	4
	A ₃	4	2	4	0
	A_4	0	4	0	8

Solution : Comparing the strategies A_3 and A_1 of A we see that A_3 dominates A_1 . The reduced matrix is

	\mathbf{B}_1	B ₂	B ₃	B ₄
A ₂	3	4	2	4
A ₃	4	2	4	0
A	0	4	0	8

Again comparing B_1 and B_3 for B, we find that B_3 dominantes B_1 . The reduced me matrix is

	B_2	B ₃	B ₄	
A ₂	4	2	4	
A ₃	2	4	0	
A ₄	4	0	8	

P-II- 4.20 Again comparing B_2 with the average of B_3 and B_4 $\begin{pmatrix} 3\\2\\4 \end{pmatrix}$ we find that B be deleted from the matrix. The reduced matrix is 24 4 A_2 A₃ 0 0 8 A₄ Now we find that on comparing A_1 with the average of A_3 and A_4 (2, 4), A. can be deleted. The reduced game matrix is $\begin{array}{cccc}
 B_3 & B_4 \\
 A_3 & 4 & 0 \\
 A_4 & 0 & 8
\end{array}$

After finding the differences, of the pay-offs of rows and columns and interchanging them we get

$$A_{3} \begin{pmatrix} B_{3} & B_{4} \\ 4 & 0 \\ 0 & 8 \end{pmatrix} = \frac{4}{4}$$
Optimal strategy for A :
$$\begin{pmatrix} 0 \\ 0 \\ 2 \\ 3 \\ \frac{1}{3} \end{pmatrix}$$
Optimal Strategy for B :
$$\begin{pmatrix} 0, 0, \frac{2}{3}, \frac{1}{3} \end{pmatrix}$$
Value of the game =
$$\frac{4 \times 8 + 0 \times 4}{12} = \frac{32}{12}$$
 or
$$\frac{8}{3}$$
Example 16 : Solve the following

Q.4.Solve the game whose payoff matrix is given below:

	В		
		B ₁	B_2
А	A_1	6	-1
	A_2	0	4
	A ₃	4	3

$$\begin{array}{c} PII-4.28\\ \hline Solution: The given game is a 3×2 game. The possible 2×2 sub-games is a 3×2 game. The possible 2×2 sub-games is a 3×2 game. The possible 2×2 sub-games is a 3×1 games is 3 and value of game is 3 and value of 11 games is 1 A_2 \begin{bmatrix} 6 & -1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} A_1 & A_1 & A_1 & A_2 & A_1 & A_2 & A_2 & A_3 & A_1 & A_2 & A_3 & A_2 & A_3 & A_2 & A_3 & A_3$$

Q.5. A has two ammunition stores, one of which is twice as valuable as the other. B is an attacker who can destroy an undefended store but he can attack only any one of them at a time. A knows that B is about to attack one of the stores but does not know which one. What should he do? Note that he can successfully defend one store at a time?

